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SUMKARY 

It is shown that the minimal number of interchanges necessary 

to transform one (0,l)-matrix into smother equivalent one may be computed 

from the maximal number of edge-disjoint circuits in a bipartite graph 

derived from the difference of the matrices. This partially answers a 

question raised by Ryser, Two (0,l)-matrices are said to be equivalent 

if their difference has zero row and column sums. They are said to 

differ by an  interchange if they are equivalent and their difference is 

zero except for a 2X2 minor. 



1.  Introduction.  In this paper we obtain a partial answer in graph- 

theoretic form to a question raised by Ryser [2, page 68] concerning 

the minimal number of interchanges required to transform equivalent 

(0,1)-matrices into each other. 

For given positive integers m and n we consider the collection 

of m X n, (0,1)-matrices A = {a. .}, 

a. . = 0 or 1 
1J 

1 < i < m, l<.j<n 

We say the (0,l)-matrices A = {a..} and B = {b..] are equivalent 

and write A ~ B if and only if they have the same row and column sums, 

that is, if and only if 

r. = S. a. . = S. b. . 

s , = 2. a. . = S. b. . . 
j   i ij   i ij 

We note immediately that A ~ B if and only if B - A ~ 0, where 0 

designates the m X n matrix of zeros. 

Given a (0,1)-matrix A, we can obtain an equivalent one, A* , 

by finding a 2X2 minor of A of the form 

or 

0 0 

and replacing it by the other. Ryser calls this transformation from A 

to  A1  an interchange and shows [1; 2, page 68] that any matrix equivalent 

to A may be obtained from it by a suitable sequence of interchanges. We 

will show the following: 



THEOREM 1.     If    A    and    B    are equivalent  (0,1)-matrices,  then    B 

can be obtained  from    A    by a sequence of 

(1.1) ± a(A,B)  -  ß(G) 

and no fewer interchanges, where a(A,B)  is the number of positions at 

which A and B disagree, G is the directed, bipartite graph derived 

from B - A ~ 0, and  ß(G)  is the maximum number of edge disjoint 

circuits in G. 

Experimentation with a number of reasonably small examples has shown 

that determination of the maximum number of interchanges by evaluating 

ß(G)  is considerably easier than by a direct examination of the matrices 

A and B.  However, no simple algorithm for computing  ß(G)  has been 

found. 

In §2, we develop some convenient methods and notations concerning 

graphs and matrices.  In §3, we reprove Ryser's result that a sequence 

of interchanges exists, showing, in fact, that a sequence of length (1.1) 

exists.  In §4, we prove a general result on graphs and show it implies 

(1.1) is a lower bound for the number of interchanges, 

2.  Preliminaries. 

DEFINITION 1.  By a graph G  with multiplicities, or graph for short, 

we mean a set V = [v ,Vp,,.,,v }  of vertices and an integer-valued 

function F on the ordered pairs of V x V satisfying F(v.,v.) = - r(v.,v.) 

so that in particular F(v.,v.) = 0.  We designate by £  the collection of 

ordered pairs  (v. tv.)  of V X V  for which F(v. .v.) > 0, We choose to 
i' J i j 

write the elements of ß in the form E(v. ,v.)  and say E(v. ,v.)  is am 
J "^   J 

arc of G directed from v.  to y . of multiplicity F(v.,v.). 



A graph with multiplicities may be thought of, if desired, as an 

undirected loopless graph where F(v.,v.) / 0 is a flux from v.  to 

v.  through the only edge connecting v.  and v.. 
J J 

The class of all graphs with given vertex set V we designate 0 =®(V). 

Throughout we will suppose V is fixed but arbitrary.  Of special interest is 

the subclass (y*c0(V) consisting of basic graphs — graphs with arcs of 

multiplicity 1 only.  Basic graphs may be thought of as directed graphs 

with at most one arc, regardless of direction, connecting any distinct 

vertices. Given any basic graph G*  from ÖJ*  we define a subset Ö(G*) 

of 0(V)  as follows:  G is in ÖCG»)  if and only if for each arc E(v ,v.) 

of G either E(v.,v.)  or E(v.,v.)  is an arc of G*. 

PROPOSITION 1,  If G^^ and G  are graphs in &   with functions F1 

and F_,  then the function F given by 

FCv^v..) = F1(vi,v;.) + F2(vi,v;.) 

is the function of a graph G which we may call the sum G. + Gp, Ö(V) 

is an additive group under this composition and each 6KG*)  is a subgroup. 

We will say a sum SG. of graphs in a class (S(G*)  is conjoint if for 

each arc E of G*  the nonzero integers F.(E)  have the same sign, that 

is, if there is no cancellation in forming the sum F = S F. for G,  or 

in the undirected graph interpretation all fluxes reinforce.  If, in fact, 

for each E in G* at most one F.(E)  is nonzero we will say the sum 

EG. is disjoint.  It will be seen that conjointness in a sum of graphs is thus 

a generalization of the usual concept of edge disjointness.  By a circuit of 

length r (an r-circuit) we mean a graph in &*   having exactly r>3 distinct arcs 



ECp-pP^, E(p2,p3) ,..., E(pr,p1) 

joining r distinct vertices P-,,?-,,...,?  of V. 

We say a graph is conservative if the sum of multiplicities of arcs 

leaving each vertex equals the sum of multiplicities of entering arcs.  Any 

circuit is conservative, but also: 

PROPOSITION 2.  If the graph G of Ö(G*)  is conservative, it can 

be written as a conjoint sum of circuits in 0(G*). 

If we wish to consider bipartite graphs we can suppose the vertex set 

V is the disjoint union of sets X = ^ ,x2 ,... ,xm] and T = Cy-j^ ,y2 ,... ,y 3 , 

m + n = t, and restrict attention to the subclass Ö c:(y(V)  containing those 

graphs which have no arcs connecting'two points in X or two points in Y. 

As before we will suppose the integers m and n and the sets X and Y 

understood when considering a class Ö ,  The definitions and results on 

circuits, conservative graphs and subgroups GKG*)  will carry over to the 

bipartite case. 

If (!>)  is the class of bipartite graphs on vertex sets X and Y 

of m and n elements respectively, we can define for each m x n matrix 

of integers  A = [a..3  the graph G(A)  in Ö  whose function F is 

given by F(x.,y.) = - F(y.,x.) = a...  The correspondence A •• G(A)  is 

an isomorphism between the additive group of rn x n matrices and the 

group  W .  Accordingly, we will speak of these matrices and graphs 

interchangeably when convenient. 

PROPOSITION 3.  An m X n matrix A is equivalent to zero if and 

only if G(A)  is conservative. 



We note that if the graph Q(C) in &'    corresponding to the 

matrix C is an r-circuit we may permute the rows and columns of C 

to obtain an m X n matrix 

X 0 

0 0 

where T is an r X r matrix with r I's on the diagonal,  r-1 -I's 

on the superdiagonal and a -1 in the lower left.  Propositions 2 and 3 

combine to give: 

PROPOSITION k. Every m X n matrix A equivalent to zero is the 

conjoint sum of bipartite circuits. If the only entries of A are 0, 

1 and -1,  the sum is disjoint. 

3. Proof that (l.l) can be attained.  For any conservative graph G 

in some class (SKG*)  let n  = a(G)  be the sum of multiplicities of G 

and let  ß = ß(G)  be the largest integer for which G can be written 

as a conjoint sum of ß  circuits.  It is easily seen thr  o(G)  and ß(G) 

are independent of the particular choice of G*.  In the remainder of this 

section only we direct our attention exclusively to a class &'    of 

bipartite graphs.  We note that if A and B are equivalent (0,l)-matrices 

a(A,B)  the number of disagreements between A and B,  equals a(G(B-A)). 

LEMMA 1.  If  A and B are equivalent (0,1)-matrices then there 

exists a sequence 

A=A0, A1, A2, ..., A . B ß = ß(G(B - A)), 

of equivalent (0,l)-matrices such that each difference 

C. = A. - A. n i   i   i-l 



is a circuit  (of length    r.)   and 

(3.1) B - A =    2    C. 
J=l 

is a disjoint sum.  Moreover, 

ß 
a(A,B) = S r.. 

1=1 *■ 

Proof.  B - A satisfies the stronger conditions of Proposition k, 

hence the disjoint sum (3.1) exists.  The partial sums 

i 
A. = A + S  C. 

3=1 * 

are all equivalent to A since the  C.  are equivalent to zero.  The 

disjointness in (3 = l) and the fact A and B are (0,1)-matrices imply 

the A.  are also (O,l)-matriceso 

LEMMA 2,  If A and B are equivalent (0,l)-matrices and C = B - A 

is an r-circuit, then r = 2s and there exists a sequence 

(3.2) A=A   A   A        A B 

of equivalent (0,l)-matrices for which the differences 

D. = A. - A. n 
1     2. 1-1 

are circuits of length k,  i.e.  A.  and A.   differ only by an interchange. 

Proof. All graphs in (5)  are bipartite, hence the. circuit B - A 

has even length r = 2s.  A weak result 

s-1 
B = A +    S    D! 

3=1    X 

for certain 4-circuits    D!     follows easily upon examination of Figure 1. 



length of C = 2s 

Figure 1. 

Note that the D.'  will necessarily visit vertices in X and I alter- 

nately and hence are indeed elements of Ö) .  We seek a reordering D. 

of DI  SO that 
i 

i 
A. = A + E D. 

are (0,l)-matrices.  Clearly the A.  will be equivalent.  The sum 

s-1 
H = E D'. 

is a (2s-2)-circuit in Ö ,  and a matrix of zeros and ones.  We assert 

either 

(i) A, A + D», A + D' +H = B 

(ii) A, A + H, A + H + D' = B 

is a sequence of equivalent (O,l)-matriceso  The only possible difficulty 

is the value of the middle terms for the ordered pair (x.,y.)  correspond- 

ing to  E in Figure 1.  But D'  and H take opposite values for this 

pair, hence exactly one of A + D'  and A+H is a (01l)-matrix.  By 

applying the sane argument to the circuit H instead of  C we may place 

additional terms between A+D'  and B if (i) holds or between A and 

A+H if (ii) holds.  Repeating this process a sufficient number of times 



we will reach simultaneously the sequence (3-2) and the proper reordering 

of the D!. 
i 

LEMMA 3.  If A and B are equivalent (0,l)-matrices there exists 

a sequence 

(3.3) A—AQ , A^ , Ag , • • • < A^ B 

of equivalent (0,l)-matrices for which the differences A. - A. ,  are 
i i-l 

't-circuits  and 

k = |«(A,B)  - ß(G(B-A». 

Proof.  The existence of the sequence (3o3) follows from lemmas 

1 and 2.  The value of k derives from the computation 

ß  1 1 ß      ß     1 E (^ ri - 1) = I Z T± -    2 1=| «(A,B) -p . 
i=l i=l    i=l 

k.     Proof that (l.l) is a lower bound.  Let G be any graph in a subgroup 

WCG*) C (S).  We have defined a(G)  and ß (G).  For any positive integer 

6 > 3 let f  =  Y(G,5)  be the smallest integer for which G can be 

written as the sum of y circuits from öCG*)  of length 6 or less.  If 

G cannot be so written set y = c°- 

THEOREM 2.  If G is a finite, conservative graph in Ö(G*),then 

Y(G,5)>^G)
6-_2|(G)  . 

Proof- We need consider the case y < ^ only.  We fix 6  and define 

the function 4)(G), 

4(G) = a(Q) - 2ß(G) - (6 - 2) • Y(G). 



We must show 

(4ol) ^(G) < 0    for all G in Ö(G*) 

Suppose (.k.l)   false.  Choose a graph G  from Ö(G*)  for which 

a(G0)  is as small as possible subject to 

(4.2) 

Since  the  empty graph satisfies  (4.1),  we have 

a(G0) > 0, ß(G0)>0, Y(G0) > 0. 

Let 

(t)(G0) > 0. 

(4.5) G0 = * Di 
i=l 

be some expression for G0 as a sum of a minimum number of circuits of 

®(G*)  of length 6  or less.  For each D.  let q(D.)  be the number 

of arcs of  D.  which coincide (with proper orientation) with an arc of 

G .  There must exist a D  for which ^(D. ) > 5 - 1 for otherwise we 

would have 

Y 
a(G0) < S q(D ) < (6 - 2) • YCQQ) 

i=l 

in violation of (4.2). 

We suppose first, that ^D. ) = 6.  Consider 

Y(G0) 

(4.4) G« = S D.. 
i=l 1 

iA 

By exhibiting a specific sum for G', (4.4) shows that 

(4.5) Y(Gn) ^YtG') + 1. 
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Further let 

(k.6) 
ßCG') 

G« =  2  C. 
1=1  x 

be a representation of G'  as a conjoint sum of a maximal number of circuits. 

Then, because q(D,) = ' i 

ß(G') 
Gn =  S C. + D. 
0   . n  i   k i=l 

is a conjoint sum for G ,  implying 0' 

(4.7) ß(G0) > ß(G') + 1. 

Combining (4.5), (4.7) and <* (G ) =a(Gl) +6  we conclude 

(4.8) (|)(G0) < (t)(G') 

which contradicts the choice of G- as a smallest graph satisfying (4.2), 

In the same way the assumption q(D ) = 6-1 for a circuit D  of 

length 6-1 leads to (4.8) with strict inequality. 

I 

As a third and last alternative, we assume there exists a circuit D, 
k 

in (4.3) of length i>     for which ^(D,) =6-1.  Let E be the only arc 

of D  which does not coincide with an arc of G .  Again we form G'  as 

in (404) and find an expansion (4.6). We check that G'  is in 0(G*).  In 

G', ö-l multiplicities of G-. have been decreased, and one corresponding 

to E ,  the arc reverse to E, has been increased (possibly from zero to 

one).  Thus 

(4.9) «(Q ) = TtG') +6-2. 

As before (4.5) must hold. Let C, be any circuit in (4.6) which has an 

arc coinciding with E~. Now C + D may not be a circuit, but it is a 

nonvacuous, conservative graph which, by Proposition 2, is the conjoint sum 



11 

0+0,= s c. h   k  i=1 ! 

of at least one circuit. Therefore, we have 

ß(G')     e , 
G- =  S C. + S C , 
0   i-1 1  1=1 

iA 

and  this sum is easily seen to be conjoint.  Accordingly, 

(4.10)      P(G0) ipte'). 

But (4.5), (4.9) and (4.10) imply (4.8) again, and we are forced to 

conclude (4.1) always holds.  This concludes the proof of Theorem 2. 

Theorem 1 now follows directly from Lemma 3 and Theorem 2 for 6=4, 

ma*) =0°. 

A theorem similar to Theorem 1 can be proven for the case 6 =3- 

THEOREM 3.  If G is a conservative graph in 0(V) , a(G)  is the 

sum of multiplicities of arcs of G, and ß(G)  is the largest integer 

for which G can be written as a conjoint sum of circuits, then G can 

be written ^s the sum of 

(4.11) «(a) - 2ß(G) 

and no fewer 3-circuits from (hKV). 

Proof.  Theorem 2 says (4.11) is a lower bound. The proof that 

(4.11) can be realized follows from Figure 2 in the saune way Theorem 1 

and Lemmas 1, 2 and 3 follow from Figure 1. 
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Figure 2. 

length of C = r 
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